Álgebra linear Exemplos

Escreva como um Vetor Igualdade 3x+4y=7 , 6x+8y=14
,
Etapa 1
Escreva o sistema de equações em formato de matriz.
Etapa 2
Reduza a linha para eliminar uma das variáveis.
Toque para ver mais passagens...
Etapa 2.1
Multiply each element of by to make the entry at a .
Toque para ver mais passagens...
Etapa 2.1.1
Multiply each element of by to make the entry at a .
Etapa 2.1.2
Simplifique .
Etapa 2.2
Perform the row operation to make the entry at a .
Toque para ver mais passagens...
Etapa 2.2.1
Perform the row operation to make the entry at a .
Etapa 2.2.2
Simplifique .
Etapa 3
Use a matriz de resultados para declarar as soluções finais ao sistema de equações.
Etapa 4
Resolva a equação para .
Toque para ver mais passagens...
Etapa 4.1
Subtraia dos dois lados da equação.
Etapa 4.2
Multiplique os dois lados da equação por .
Etapa 4.3
Simplifique os dois lados da equação.
Toque para ver mais passagens...
Etapa 4.3.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.3.1.1
Simplifique .
Toque para ver mais passagens...
Etapa 4.3.1.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.3.1.1.1.1
Cancele o fator comum.
Etapa 4.3.1.1.1.2
Reescreva a expressão.
Etapa 4.3.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.3.1.1.2.1
Fatore de .
Etapa 4.3.1.1.2.2
Cancele o fator comum.
Etapa 4.3.1.1.2.3
Reescreva a expressão.
Etapa 4.3.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.3.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 4.3.2.1.1
Aplique a propriedade distributiva.
Etapa 4.3.2.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.3.2.1.2.1
Cancele o fator comum.
Etapa 4.3.2.1.2.2
Reescreva a expressão.
Etapa 4.3.2.1.3
Combine e .
Etapa 4.3.2.1.4
Combine e .
Etapa 4.4
Reordene e .
Etapa 5
A solução é o conjunto de pares ordenados que tornam o sistema verdadeiro.
Etapa 6
Para decompor um vetor da solução, reorganize cada equação representada na forma de linha reduzida da matriz aumentada resolvendo a variável dependente em cada linha que produz igualdade vetorial.